Language:
    • Available Formats
    • Options
    • Availability
    • Priced From ( in USD )
    • Printed Edition
    • Ships in 1-2 business days
    • $63.00
    • Add to Cart
    • Printed Edition + PDF
    • Immediate download
    • $85.00
    • Add to Cart

Customers Who Bought This Also Bought

 

About This Item

 

Full Description

1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Techniques considered for introducing helium may include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended.
1.2 Three other methods for introducing helium into irradiated materials are not covered in this guide. They are: (1) the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, (2) a related technique that uses a thin layer of NiAl on the specimen surface to inject helium, and (3) isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-6).2 Dual ion beam techniques (7) for simultaneously implanting helium and generating displacement damage are also not included here. This latter method is discussed in Practice E521.
1.3 In addition to helium, hydrogen is also produced in many materials by nuclear transmutation. In some cases it appears to act synergistically with helium (8-10). The specific impact of hydrogen is not addressed in this guide.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
 

Document History

  1. ASTM E942-23

    👀 currently
    viewing


    Standard Guide for Investigating the Effects of Helium in Irradiated Metals

    • Most Recent
  2. ASTM E942-16


    Standard Guide for Investigating the Effects of Helium in Irradiated Metals

    • Historical Version
  3. ASTM E942-96(2011)


    Standard Guide for Simulation of Helium Effects in Irradiated Metals

    • Historical Version
  4. ASTM E942-96(2003)


    Standard Guide for Simulation of Helium Effects in Irradiated Metals

    • Historical Version
  5. ASTM E942-96


    Standard Guide for Simulation of Helium Effects in Irradiated Metals

    • Historical Version