Hello. Sign In
Standards Store

ASTM C1044

2016 Edition, September 1, 2016

Complete Document

Standard Practice for Using a Guarded-Hot-Plate Apparatus or Thin-Heater Apparatus in the Single-Sided Mode



View Abstract
Product Details
Document History

Detail Summary

Active, Most Current

EN
Format
Details
Price (USD)
PDF
Single User
$46.00
Print
In Stock
$46.00
PDF + Print
In Stock
$78.20 You save 15%
Add to Cart

People Also Bought These:

NFPA 70
API STD 53
API RP 14E
API RP 16ST

Product Details:

  • Revision: 2016 Edition, September 1, 2016
  • Published Date: September 1, 2016
  • Status: Active, Most Current
  • Document Language: English
  • Published By: ASTM International (ASTM)
  • Page Count: 9
  • ANSI Approved: No
  • DoD Adopted: No

Description / Abstract:

This practice covers the determination of the steadystate heat flow through the meter section of a specimen when a guarded-hot-plate apparatus or thin-heater apparatus is used in the single-sided mode of operation.

This practice provides a supplemental procedure for use in conjunction with either Test Method C177 or C1114 for testing a single specimen. This practice is limited to only the single-sided mode of operation, and, in all other particulars, the requirements of either Test Method C177 or C1114 apply.

NOTE 1—Test Methods C177 and C1114 describe the use of the guarded-hot-plate and thin-heater apparatus, respectively, for determining steady-state heat flux and thermal transmission properties of flat-slab specimens. In principle, these methods cover both the double- and single-sided mode of operation, and at present, do not distinguish between the accuracies for the two modes of operation. When appropriate, thermal transmission properties shall be calculated in accordance with Practice C1045.

This practice requires that the cold plates of the apparatus have independent temperature controls. For the singlesided mode of operation, a (single) specimen is placed between the hot plate and the cold plate. Auxiliary thermal insulation, if needed, is placed between the hot plate and the auxiliary cold plate. The auxiliary cold plate and the hot plate are maintained at the same temperature. The heat flow from the meter plate is assumed to flow only through the specimen, so that the thermal transmission properties correspond only to the specimen.

NOTE 2—The double-sided mode of operation requires similar specimens placed on either side of the hot plate. The cold plates that contact the outer surfaces of these specimens are maintained at the same temperature. The electric power supplied to the meter plate is assumed to result in equal heat flow through the meter section of each specimen, so that the thermal transmission properties correspond to an average for the two specimens.

This practice does not preclude the use of a guardedhot- plate apparatus in which the auxiliary cold plate is either larger or smaller in lateral dimensions than either the test specimen or the cold plate.

NOTE 3—Most guarded-hot-plate apparatus are designed for the doublesided mode of operation (1).2 Consequently, the cold plate and the auxiliary cold plate are the same size and the specimen and the auxiliary insulation will have the same lateral dimensions, although the thicknesses need not be the same. Some guarded-hot-plate apparatus, however, are designed specifically for testing only a single specimen that is either larger or smaller in lateral dimensions than the auxiliary insulation or the auxiliary cold plate.

This practice is suitable for use for both low- and high-temperature conditions.

This practice shall not be used when operating an apparatus in a double-sided mode of operation with a known and unknown specimen, that is, with the two cold plates at similar temperatures so that the temperature differences across the known and unknown specimens are similar.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.