Hello. Sign In
Standards Store


2014 Edition, April 1, 2014

Complete Document

Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid Electrical Insulation

View Abstract
Product Details
Document History

Detail Summary

Active, Most Current

Price (USD)
Single User
In Stock
Add to Cart

People Also Bought These:


Product Details:

  • Revision: 2014 Edition, April 1, 2014
  • Published Date: April 1, 2014
  • Status: Active, Most Current
  • Document Language: English
  • Published By: ASTM International (ASTM)
  • Page Count: 10
  • ANSI Approved: Yes
  • DoD Adopted: Yes

Description / Abstract:

This test method covers, in a preliminary fashion, the differentiation of similar materials' resistance to the action of a high-voltage, low-current arc close to the surface of insulation, when a conducting path is formed causing the material to become conducting due to the localized thermal and chemical decomposition and erosion.

The usefulness of this test method is very severely limited by many restrictions and qualifications, some of which are described in the following paragraphs and in Section 5. Generally, this test method shall not be used in material specifications. Whenever possible, alternative test methods shall be used, and their development is encouraged.

This test method will not, in general, permit conclusions to be drawn concerning the relative arc resistance rankings of materials that are potentially subjected to other types of arcs: for example, high voltage at high currents, and low voltage at low or high currents (promoted by surges or by conducting contaminants).

The test method is intended, because of its convenience and the short time required for testing, for preliminary screening of material, for detecting the effects of changes in formulation, and for quality control testing after correlation has been established with other types of simulated service arc tests and field experience. Because this test method is usually conducted under clean and dry laboratory conditions rarely encountered in practice, it is possible that the prediction of a material's relative performance in typical applications and in varying "clean to dirty" environments will be substantially altered (Note 1). Caution is urged against drawing strong conclusions without corroborating support of simulated service tests and field testing. Rather, this test method is useful for preliminary evaluation of changes in structure and composition without the complicating influence of environmental conditions, especially dirt and moisture.

NOTE 1-By changing some of the circuit conditions described herein it has been found possible to rearrange markedly the order of arc resistance of a group of organic insulating materials consisting of vulcanized fiber and of molded phenolic and amino plastics, some containing organic, and some inorganic, filler.

While this test method uses dry, uncontaminated specimen surfaces, Test Method D2132, Test Methods D2303, and Test Method D3638 employ wet, contaminated specimen surfaces. Their use is recommended for engineering purposes and to assist in establishing some degree of significance to this test method for quality control purposes.2

This test method is not applicable to materials that do not produce conductive paths under the action of an electric arc, or that melt or form fluid residues that float conductive residues out of the active test area thereby preventing formation of a conductive path.

The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 6.1.14, 6.1.19, Section 7, and 10.1.1.

2 Also helpful is Test Method D2302 for Wet Tracking Resistance of Electrical Insulating Materials with Controlled Water-to-Metal Discharges. This test method was withdrawn and last appeared in the 1982 Annual Book of ASTM Standards, Part 39.