Hello. Sign In
Standards Store


2012 Edition, 2012

Complete Document

Detail Summary

Active, Most Current

Additional Comments:
ISBN: 9781118280812
Price (USD)
Secure PDF
Single User
Call for Quote
Add to Cart

Product Details:

  • Revision: 2012 Edition, 2012
  • Published Date: January 2012
  • Status: Active, Most Current
  • Document Language:
  • Published By: John Wiley and Sons (WILEY)
  • Page Count: 480
  • ANSI Approved: No
  • DoD Adopted: No

Description / Abstract:


Geobiology is a scientific discipline in which the principles and tools of biology are applied to studies of the Earth. In concept, geobiology parallels geophysics and geochemistry, two longer established disciplines within the Earth sciences. Beginning in the 1940s, and accelerating through the remainder of the twentieth century, scientists brought the tools of physics and chemistry to bear on studies of the Earth, transforming geology from a descriptive science to a quantitative field grounded in analysis, experiment and modeling. The geophysical and geochemical revolutions both reflected and drove a strong disciplinary emphasis on plate tectonics and planetary differentiation, not least because, for the first time, they made the Earth's interior accessible to research.

While geochemistry and geophysics occupied centre stage in the Earth sciences, another multidisciplinary transformation was taking shape nearer to the field's periphery. Paleontology had long brought a measure of biological thought to geology, in no small part because fossils provide a basis for correlating sedimentary rocks. But while it was obvious that life had evolved on the Earth, it was less clear to most Earth scientists that life had actually shaped, and been shaped, by Earth's environmental history. For example, in Tempo and Mode in Evolution, paleontology's key contribution to the Neodarwinian synthesis in evolutionary biology, G.G. Simpson (1944) devoted less than a page to questions of environmental interactions. As early as 1926, however, the Russian scientist Vladimir Vernadsky had published The Biosphere, setting forth the argument that life has shaped our planet's surface environment throughout geologic time. Vernadsky also championed the idea of a noosphere, a planet transformed by activities of human beings. A few years later, the Dutch microbiologist Lourens Baas-Becking (1934) coined the term geobiology to describe the interactions between organisms and environment at the chemical level. Whereas most paleontologists stressed morphology and systematics, Vernadsky and Baas-Becking focused on metabolism – and in the long run that made all the difference.

As the twentieth century entered its final decade, interest in geobiology grew, driven by an increasing emphasis within the Earth sciences on understanding our planetary surface, and supported by accelerating research on the microbial control of elemental cycling, the ecological diversity of microbial life under even the most harsh environmental conditions (commonly referred to as extremeophiles), the use of microbes to ameliorate pollution (bioremediation) or recover valuable metals from mine waste (biorecovery), Earth's ancient microbial history, and efforts to understand human influences on the Earth surface system. And, in the twenty-first century, universities are increasingly supporting research and education in geobiology, international journals (e.g., Geobiology, Biogeosciences) have prospered, textbooks have been published (e.g., Schlesinger, 1997; Canfield et al., 2005; Konhauser, 2007; Ehrlich and Newman, 2009), and conferences occur regularly. Without question, geobiology has come of age.