Hello. Sign In
Standards Store

IEEE 519

2014 Edition, March 27, 2014

Complete Document

Recommended Practice and Requirements for Harmonic Control in Electric Power Systems

View Abstract
Product Details
Document History

Detail Summary

Active, Most Current

Price (USD)
Single User
In Stock
Add to Cart

People Also Bought These:

ASME B31.1
AWS D1.1/D1.1M

Referenced Items:

ANSI C34.2
IEEE 100
IEEE 223

Product Details:

Description / Abstract:

This recommended practice establishes goals for the design of electrical systems that include both linear and nonlinear loads. The voltage and current waveforms that may exist throughout the system are described, and waveform distortion goals for the system designer are established. The interface between sources and loads is described as the point of common coupling and observance of the design goals will minimize interference between electrical equipment.

This recommended practice addresses steady-state limitations. Transient conditions exceeding these limitations may be encountered. This document sets the quality of power that is to be provided at the point of common coupling. This document does not cover the effects of radio-frequency interference; however, guidance is offered for wired telephone systems.


This recommended practice is to be used for guidance in the design of power systems with nonlinear loads. The limits set are for steady-state operation and are recommended for "worst case" conditions. Transient conditions exceeding these limits may be encountered. In any case, the limit values given in this document are recommendations and should not be considered binding in all cases. Because of the nature of the recommendations, some conservatism is present that may not be necessary in all cases.

This recommended practice should be applied at interface points between system owners or operators and users in the power system. The limits in this recommended practice are intended for application at a point of common coupling (PCC) between the system owner or operator and a user, where the PCC is usually taken as the point in the power system closest to the user where the system owner or operator could offer service to another user. Frequently for service to industrial users (i.e., manufacturing plants) via a dedicated service transformer, the PCC is at the HV side of the transformer. For commercial users (office parks, shopping malls, etc.) supplied through a common service transformer, the PCC is commonly at the LV side of the service transformer.

The limits in this recommended practice represent a shared responsibility for harmonic control between system owners or operators and users. Users produce harmonic currents that flow through the system owner's or operator's system which lead to voltage harmonics in the voltages supplied to other users. The amount of harmonic voltage distortion supplied to other users is a function of the aggregate effects of the harmonic current producing loads of all users and the impedance characteristics of the supply system. Harmonic voltage distortion limits are provided to reduce the potential negative effects on user and system equipment. Maintaining harmonic voltages below these levels necessitates that

- All users limit their harmonic current emissions to reasonable values determined in an equitable manner based on the inherent ownership stake each user has in the supply system and

- Each system owner or operator takes action to decrease voltage distortion levels by modifying the supply system impedance characteristics as necessary.

In order to allow the system owner or operator to control the system impedance characteristics to reduce voltage distortion when necessary, users should not add passive equipment that affects the impedance characteristic in a way such that voltage distortions are increased. In effect, such actions by a user could amount to producing excessive voltage harmonic distortion. Such passive equipment additions (that lead to undesirable system impedance characteristics) should be controlled by the user in the same manner as current harmonic-producing devices operated by the user.