Hello. Sign In   |    Help & Support   |    Contact Us   |   
Standards Store
SEARCH:
and/or  
ASTM D2216 (Complete Document)
Revision / Edition: 10 Chg: Date: July 1, 2010
Active, Most Current
STANDARD TEST METHODS FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK BY MASS
Additional Comments: ALSO SEE ASTM SOIL
Page Count:7
PDF :
$43.00 USD
In Stock
Print :
$48.00 USD
In Stock
ASTM BOS
IHS Standards Expert
These test methods cover the laboratory determination of the water (moisture) content by mass of soil, rock, and similar materials where the reduction in mass by drying is due to loss of water except as noted in 1.4, 1.5, and 1.7. For simplicity, the word "material" shall refer to soil, rock or aggregate whichever is most applicable.

Some disciplines, such as soil science, need to determine water content on the basis of volume. Such determinations are beyond the scope of this test method.

The water content of a material is defined in 3.2.1.

The term "solid material" as used in geotechnical engineering is typically assumed to mean naturally occurring mineral particles of soil and rock that are not readily soluble in water. Therefore, the water content of materials containing extraneous matter (such as cement etc.) may require special treatment or a qualified definition of water content. In addition, some organic materials may be decomposed by oven drying at the standard drying temperature for this method (110°C). Materials containing gypsum (calcium sulfate dihydrate) or other compounds having significant amounts of hydrated water may present a special problem as this material slowly dehydrates at the standard drying temperature (110°C) and at very low relative humidity, forming a compound (such as calcium sulfate hemihydrate) that is not normally present in natural materials except in some desert soils. In order to reduce the degree of dehydration of gypsum in those materials containing gypsum or to reduce decomposition in highly/fibrous organic soils, it may be desirable to dry the materials at 60°C or in a desiccator at room temperature. Thus, when a drying temperature is used which is different from the standard drying temperature as defined by this test method, the resulting water content may be different from the standard water content determined at the standard drying temperature of 110°C.

NOTE 1—Test Method D2974 provides an alternate procedure for determining water content of peat materials.

Materials containing water with substantial amounts of soluble solids (such as salt in the case of marine sediments) when tested by this method will give a mass of solids that includes the previously soluble dissolved solids. These materials require special treatment to remove or account for the presence of precipitated solids in the dry mass of the specimen, or a qualified definition of water content must be used. For example, see Test Method D4542 regarding information on marine sediments.

This test standard requires several hours for proper drying of the water content specimen. Test Methods D4643, D4944 and D4959 provide less time-consuming processes for determining water content. See Gilbert2 for details on the background of Test Method D4643.

Two test methods are provided in this standard. The methods differ in the significant digits reported and the size of the specimen (mass) required. The method to be used may be specified by the requesting authority; otherwise MethodAshall be performed.

Method A—The water content by mass is recorded to the nearest 1 %. For cases of dispute, Method A is the referee method.

Method B—The water content by mass is recorded to the nearest 0.1 %.

This standard requires the drying of material in an oven. If the material being dried is contaminated with certain chemicals, health and safety hazards can exist. Therefore, this standard should not be used in determining the water content of contaminated soils unless adequate health and safety precautions are taken.

Units—The values stated in SI units shall be regarded as standard excluding the Alternative Sieve Sizes listed in Table 1. No other units of measurement are included in this test method.

Refer to Practice D6026 for guidance concerning the use of significant figures that shall determine whether Method, A or B is required. This is especially important if the water ntent will be used to calculate other moist mass to dry mass or vice versa, wet unit weight to dry unit weight or vice versa, and total density to dry density or vice versa. For example, if four significant digits are required in any of the above calculations, then the water content must be recorded to the nearest 0.1 %. This occurs since 1 plus the water content (not in percent) will have four significant digits regardless of what the value of the water content is; that is, 1 plus 0.1/100 = 1.001, a value with four significant digits. While, if three significant digits are acceptable, then the water content can be recorded to the nearest 1 %.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

*A Summary of Changes section appears at the end of this standard.

2 Gilbert, P.A., "Computer Controlled Microwave Oven System for Rapid Water Content Determination," Tech. Report GL-88–21, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, November 1988

Prices subject to change without notice.
Help & Support
Home
Help & Support
Office Locations
Abbreviations Definitions
Products
Browse Publishers & Products
New Releases
Top Sellers
Tools & Services
Research Center
Alerts & Content Tools
Deposit Accounts
Standing Orders
Free Newsletters
Solutions
Individual Standards
Custom Online Collections
Online Corporate Solutions
 
Visit www.ihs.com
About IHS  |   Contact Us  |   Careers  |   Investors  |   Site Map  |   Privacy Policy  |   Terms of Use (c) 2014 IHS.